
Package: multiAssetOptions (via r-universe)
September 14, 2024

Type Package

Title Finite Difference Method for Multi-Asset Option Valuation

Version 0.1-2

Date 2021-04-20

Author Michael Eichenberger and Carlo Rosa

Maintainer Michael Eichenberger <mike.eichenberger@gmail.com>

Imports Matrix, graphics

Description Efficient finite difference method for valuing European
and American multi-asset options.

License GPL-2 | GPL-3

NeedsCompilation no

Date/Publication 2021-04-20 14:50:07 UTC

Repository https://mike4358.r-universe.dev

RemoteUrl https://github.com/cran/multiAssetOptions

RemoteRef HEAD

RemoteSha 4d205e9c5a1014d3e257cfefdaa04e232d712d95

Contents

multiAssetOptions-package . 2
matrixFDM . 2
multiAssetOption . 4
nodeSpacer . 7
payoff . 8
plotOptionValues . 9

Index 11

1

2 matrixFDM

multiAssetOptions-package

Finite Difference Method for Multi-Asset Option Valuation

Description

This package implements an efficient finite difference method for valuing multi-asset options in
the Black-Scholes world. The model assumes static volatilities and correlations. The implementa-
tion allows users to vary the option setup (number of underlying assets, call vs. put, European vs.
American, etc.) as well as some of the features of the numerical method (mesh spacing, timestep-
ping scheme, etc.).

Details

Package: multiAssetOptions
Type: Package
Version: 0.1-2
Date: 2021-04-20
License: GPL-2 | GPL-3

This package contains the function multiAssetOption, which implements a generalized version of
the finite difference method for option valuation. Several sub-functions are included in this package
to improve code clarity and presentation.

Author(s)

Michael Eichenberger and Carlo Rosa

Maintainer: Michael Eichenberger <mike.eichenberger@gmail.com>

matrixFDM Finite Difference Matrix Generator

Description

Generates a modified coefficient matrix (M-matrix) used in the finite difference method from the
option inputs. See Tavella and Randall (2000) for more on the standard formulation of the M-matrix.

Usage

matrixFDM(S, rf, q, vol, rho)

matrixFDM 3

Arguments

S list containing the vectors of spatial grid points associated with each underlying.
Vector sizes of underlying spatial grid points need not be equal.

rf scalar; applicable risk-free rate (domestic risk-free rate).

q vector; holding costs of the option’s underlyings (dividends, foreign risk-free
rates, etc.).

vol vector; volatilities of the option’s underlyings.

rho matrix; correlation matrix of the option’s underlyings.

Details

matrixFDM first constructs the non-zero diagonals of the M-matrix and stores them as columns.
The bandSparse function from the Matrix package then constructs a sparse banded matrix from
the columns of the previously contructed matrix. Spatial domain boundaries are calculated first-
order inwards with second difference terms dropped, maintaining block tridiagonality.

Value

matrixFDM returns a CsparseMatrix-class matrix used for timestepping in the finite difference
method.

Author(s)

Michael Eichenberger and Carlo Rosa

References

Tavella, D., Randall, C., 2000. Pricing Financial Instruments: The Finite Difference Method. John
Wiley & Sons, Inc., New York.

Examples

finite difference matrix for uniformly-spaced two-asset option
S1 <- list(seq(0, 5, by=1), seq(0, 5, by=1))
rf <- 0.1
q <- c(0.05, 0.04)
vol <- c(0.20, 0.25)
rho <- matrix(c(1,-0.5,-0.5,1), 2, 2)
matrixFDM(S1, rf, q, vol, rho)

4 multiAssetOption

multiAssetOption Finite Difference Method for Multi-Asset Option Valuation

Description

multiAssetOption generalizes the standard finite difference method to handle mulitple underlying
assets, non-uniform grid spacing, non-uniform timestepping, and American exercise. The imple-
mentation allows users to vary the option setup (number of underlying assets, call vs. put, European
vs. American, etc.) as well as the features of the numerical method (grid spacing, timestepping
scheme, etc.). Strike shifting the mesh and Rannacher smoothing are optionally included to remedy
problems arising from potential spurious oscillations in the solution.

Usage

multiAssetOption(X)

Arguments

X list of inputs. List items given in the Details section.

Details

Items of the input list X are as follows:

XoptnAsset integer; number of underlying assets.

XoptpayType case; if 0, digital payoff, if 1, best-of payoff, if 2, worst-of payoff.

XoptexerType case; if 0, European exercise, if 1, American exercise.

XoptpcFlag case vector; if 0, call, if 1, put.

Xoptttm scalar; time to maturity.

Xoptstrike vector; option strikes.

Xoptrf scalar; applicable risk-free rate (domestic risk-free rate).

Xoptq vector; holding costs of the option’s underlyings (dividends, foreign risk-free rates, etc.).

Xoptvol vector; volatilities of the option’s underlyings.

Xoptrho matrix; correlation matrix of the option’s underlyings.

Xfdm vector; number of spatial steps for each underlying’s domain discretization.

XfdleftBound vector; near spatial boundaries of each underlying’s domain.

XfdkMult vector; right boundary strike multiples. If 0, far domain boundary calculated via
formula given in Kangro and Nicolaides (2000). Otherwise, far domain boundary calculated
as the strike multiplied by the strike multiple.

Xfddensity vector; impacts the concentration of nodes around the option strike. At 0, nodes are
uniformly distributed between the near and far boundaries. Increasing the parameter increases
the node concentration around the strike.

multiAssetOption 5

XfdkShift case vector; if 0, no mesh shifting, if 1, adjusts the node spacing such that the strike
falls exactly between two nodes, if 2, adjusts the node spacing such that the strike falls exactly
on a node. See Tavella and Randall (2000).

Xfdtheta scalar; implicitness parameter of the theta method. Chosen between 0 (fully explicit)
and 1 (fully implicit).

XfdmaxSmooth integer; number of Rannacher smoothing steps. See Rannacher (1984).

Xfdtol scalar; error tolerance in penalty iteration for American exercise.

XfdmaxIter integer; maximum number of iterations per penalty loop for American exercise.

X$time$tsType case; if 0, constant timestep size, if 1, adaptive timestep size. See Forsyth and
Vetzal (2002).

X$time$N integer; number of total timesteps if not using adaptive timesteps.

X$time$dtInit scalar; inital timestep size for adaptive timesteps.

X$time$dNorm scalar; target relative change for adaptive timesteps.

X$time$D scalar; normalizing parameter for adaptive timesteps.

The classical order for the state vectors output from the function is illustrated by example. With two
underlying assets, option values in each state vector are stored in the order: [11, 21, 31, ... , M1,
12, 22, ... , MN] with M being the total number of nodes used in the first asset spatial discretization
and N being the total number of nodes in the second.

Value

multiAssetOption returns a list:

value matrix of per-unit option values. Each column stores the state of the option value
array (collection of option values for all nodes of the spatial mesh) as a vector
following the classical order (see Details section). The columns of the matrix
are indexed over time, with the first column beginning at option maturity, and
subsequent columns moving backward in time.

S list containing the vectors of spatial grid points associated with each underlying.
Vector sizes of underlying spatial grid points need not be equal.

dimS dimension of option value array. This item can be used to reshape the column
vectors in value into an appropriately dimensioned array using array(... ,
dim=dimS).

time vector of times associated with each column of the value item.

For each column (time) of the value item, the option value at that time can be calculated as the
option’s notional amount multiplied by the unit option value interpolated over the S item at the
current underlying prices.

Author(s)

Michael Eichenberger and Carlo Rosa

6 multiAssetOption

References

Forsyth, P.A., Vetzal, K.R., 2002. Quadratic convergence for valuing American options using a
penalty method. SIAM Journal on Scientific Computing, 23 (6), 2095–2122.

Kangro, R., Nicolaides, R., 2000. Far field boundary conditions for Black-Scholes equations. SIAM
Journal on Numerical Analysis, 38 (4), 1357–1368.

Rannacher, R., 1984. Finite element solution of diffusion problems with irregular data. Num-
berische Mathematik, 43, 309–327.

Tavella, D., Randall, C., 2000. Pricing Financial Instruments: The Finite Difference Method. John
Wiley & Sons, Inc., New York.

Examples

european dual-asset digital option example

initialize inputs list
X <- list()

option inputs
XoptnAsset <- 2
XoptpayType <- 0
XoptexerType <- 0
XoptpcFlag <- c(1, 0)
Xoptttm <- 0.5
Xoptstrike <- c(110, 90)
Xoptrf <- 0.10
Xoptq <- c(0.05, 0.04)
Xoptvol <- c(0.20, 0.25)
Xoptrho <- matrix(c(1, -0.5, -0.5, 1), XoptnAsset, XoptnAsset)

finite difference inputs
Xfdm <- c(20, 20)
XfdleftBound <- c(0, 0)
XfdkMult <- c(0, 0)
Xfddensity <- c(5, 5)
XfdkShift <- c(1, 1)
Xfdtheta <- 0.5
XfdmaxSmooth <- 2
Xfdtol <- 1e-7
XfdmaxIter <- 3

timestep inputs
X$time$tsType <- 0
X$time$N <- min(Xfdm) * 4
X$time$dtInit <- 0.1 / 4^log2(min(Xfdm)/5)
X$time$dNorm <- 5 / 2^log2(min(Xfdm)/5)
X$time$D <- 0.05

function check
output <- multiAssetOption(X)

nodeSpacer 7

nodeSpacer Non-Uniform Finite Difference Node Spacer

Description

nodeSpacer implements the spatial discretization scheme from Hout and Foulon (2010) with arbi-
trary left and right bounds. The function additionally includes logic for mesh shifting.

Usage

nodeSpacer(K, leftBound, rightBound, nodes, density, kShift)

Arguments

K scalar; option strike.

leftBound scalar; near spatial boundary of the underlying domain.

rightBound scalar; far spatial boundary of the underlying domain.

nodes integer; number of nodes used in the spatial discretization.

density scalar; impacts the concentration of nodes around the option strike. At 0, nodes
are uniformly distributed between the leftBound and rightBound. Increasing
the parameter increases the node concentration around the strike.

kShift case; if 0, no mesh shifting, if 1, adjusts the node spacing such that the strike
falls exactly between two nodes, if 2, adjusts the node spacing such that the
strike falls exactly on a node. See Tavella and Randall (2000).

Details

Mesh shifting is accomplished by multiplying the vector of gridpoints by a scalar. For multi-asset
options, this nodeSpacer is called iteratively to discretize each underlying’s spatial domain.

Value

nodeSpacer returns a vector of gridpoints used in spatial discretization in the finite difference
method. The nodes input determines the length of the output vector.

Author(s)

Michael Eichenberger and Carlo Rosa

References

Hout, K. J., Foulon, S., 2010. ADI finite difference schemes for option pricing in the Heston
model with correlation. International Journal of Numerical Analysis and Modeling, 7 (2), 303–
320. http://www.math.ualberta.ca/ijnam/Volume-7-2010/No-2-10/2010-02-06.pdf

Pooley, D. M., Vetzal, K. R., Forsyth, P. A., 2002. Convergence remedies for non-smooth payoffs
in option pricing. https://cs.uwaterloo.ca/~paforsyt/report.pdf

http://www.math.ualberta.ca/ijnam/Volume-7-2010/No-2-10/2010-02-06.pdf
https://cs.uwaterloo.ca/~paforsyt/report.pdf

8 payoff

Tavella, D., Randall, C., 2000. Pricing Financial Instruments: The Finite Difference Method. John
Wiley & Sons, Inc., New York.

Examples

sample mesh spacing
plot(nodeSpacer(100, 0, 500, 26, 5, 1), rep(0, times=26), main='Non-Uniform Mesh Spacing',

xlab='Underlying Price (Strike = 100)', ylab='', yaxt='n', type='p', cex=0.5, pch=16)

payoff Multi-Asset Option Payoff Calculator

Description

payoff calculates the per-unit option payoff for digital, best-of, and worst-of multi-asset options.

Usage

payoff(payType, pcFlag, strike, S)

Arguments

payType case; if 0, digital payoff, if 1, best-of payoff, if 2, worst-of payoff.

pcFlag case vector; if 0, call, if 1, put.

strike vector; option strikes.

S list containing the vectors of spatial grid points associated with each underlying.
Vector sizes of underlying spatial grid points need not be equal.

Value

payoff returns an array of the unit option values at each point spanned by the list of underlying
vectors. Dimension of array is inhereted from S.

Author(s)

Michael Eichenberger and Carlo Rosa

Examples

payoff of a dual-asset digital call with strikes at 100 and 90.
S <- list(seq(0, 500, by=1), seq(0, 500, by=1))
payoff(0, c(0, 0), c(100, 90), S)

plotOptionValues 9

plotOptionValues Plot Option Values Over Time

Description

plotOptionValues plots the solution of the option PDE over time.

Usage

plotOptionValues(Y, fps)

Arguments

Y list containing the items resulting from the multiAssetOption function.

fps integer; number of frames per second of the animation.

Details

Animation occurs in backwards time, beginning from the option’s expiry date, moving toward time
= 0. This function applies only to options written on one or two underlying assets. Higher dimen-
sional options are not plotted.

Author(s)

Michael Eichenberger and Carlo Rosa

See Also

multiAssetOption

Examples

plot test

initialize inputs list
X <- list()

option inputs
XoptnAsset <- 2
XoptpayType <- 0
XoptexerType <- 0
XoptpcFlag <- c(0, 0)
Xoptttm <- 0.5
Xoptstrike <- c(110, 90)
Xoptrf <- 0.10
Xoptq <- c(0.05, 0.04)
Xoptvol <- c(0.20, 0.25)
Xoptrho <- matrix(c(1, -0.5, -0.5, 1), XoptnAsset, XoptnAsset)

10 plotOptionValues

finite difference inputs
Xfdm <- c(10, 10)
XfdleftBound <- c(0, 0)
XfdkMult <- c(0, 0)
Xfddensity <- c(5, 5)
XfdkShift <- c(1, 1)
Xfdtheta <- 0.5
XfdmaxSmooth <- 2
Xfdtol <- 1e-7
XfdmaxIter <- 3

timestep inputs
X$time$tsType <- 0
X$time$N <- min(Xfdm) * 4
X$time$dtInit <- 0.1 / 4^log2(min(Xfdm)/5)
X$time$dNorm <- 5 / 2^log2(min(Xfdm)/5)
X$time$D <- 0.05

Y <- multiAssetOption(X)

function check
plotOptionValues(Y, 40)

Index

∗ package
multiAssetOptions-package, 2

matrixFDM, 2
multiAssetOption, 4, 9
multiAssetOptions

(multiAssetOptions-package), 2
multiAssetOptions-package, 2

nodeSpacer, 7

payoff, 8
plotOptionValues, 9

11

	multiAssetOptions-package
	matrixFDM
	multiAssetOption
	nodeSpacer
	payoff
	plotOptionValues
	Index

